Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elastic analysis of an inhomogeneous quantum dot in multilayered semiconductors using a boundary element method

Identifieur interne : 00DE53 ( Main/Repository ); précédent : 00DE52; suivant : 00DE54

Elastic analysis of an inhomogeneous quantum dot in multilayered semiconductors using a boundary element method

Auteurs : RBID : Pascal:02-0430103

Descripteurs français

English descriptors

Abstract

In this work, we examine the elastostatic field due to a buried quantum dot (QD) in multilayered semiconductors using a boundary element method. Since the integral kernels employ a special Greens function that satisfies the interfacial continuity and boundary conditions for a multilayered matrix, coupled with the conventional Kelvin-type Greens function for the QD, the present method only requires discretization along the interface between the matrix and QD to solve the problem. With this method, the QD can be modeled in general as an inhomogeneity relative to the matrix. We have examined a practical semiconductor multilayer system of an InAs wetting/GaAs spacer with a buried cuboidal QD of either wetting or a spacer medium. The QD is correspondingly modeled by either the inhomogeneity or inclusion approach. Two crystallographic orientations of the spacer medium, GaAs(001) and GaAs(111), are considered. The analytical results have shown that these two approaches generally result in considerable differences in the prediction of the QD-induced elastic field. Also, different crystallographic orientation of a spacer medium can cause a characteristic change in the QD-induced field. © 2002 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0430103

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Elastic analysis of an inhomogeneous quantum dot in multilayered semiconductors using a boundary element method</title>
<author>
<name sortKey="Yang, B" uniqKey="Yang B">B. Yang</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary, North Carolina 27511</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Pan, E" uniqKey="Pan E">E. Pan</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary, North Carolina 27511</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0430103</idno>
<date when="2002-09-15">2002-09-15</date>
<idno type="stanalyst">PASCAL 02-0430103 AIP</idno>
<idno type="RBID">Pascal:02-0430103</idno>
<idno type="wicri:Area/Main/Corpus">00EA96</idno>
<idno type="wicri:Area/Main/Repository">00DE53</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0021-8979</idno>
<title level="j" type="abbreviated">J. appl. phys.</title>
<title level="j" type="main">Journal of applied physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Boundary element method</term>
<term>Elasticity</term>
<term>Gallium arsenides</term>
<term>Green's function methods</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Semiconductor quantum dots</term>
<term>Theoretical study</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>6865H</term>
<term>6860B</term>
<term>6220D</term>
<term>8140J</term>
<term>Etude théorique</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
<term>Point quantique semiconducteur</term>
<term>Elasticité</term>
<term>Méthode fonction Green</term>
<term>Méthode élément frontière</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this work, we examine the elastostatic field due to a buried quantum dot (QD) in multilayered semiconductors using a boundary element method. Since the integral kernels employ a special Greens function that satisfies the interfacial continuity and boundary conditions for a multilayered matrix, coupled with the conventional Kelvin-type Greens function for the QD, the present method only requires discretization along the interface between the matrix and QD to solve the problem. With this method, the QD can be modeled in general as an inhomogeneity relative to the matrix. We have examined a practical semiconductor multilayer system of an InAs wetting/GaAs spacer with a buried cuboidal QD of either wetting or a spacer medium. The QD is correspondingly modeled by either the inhomogeneity or inclusion approach. Two crystallographic orientations of the spacer medium, GaAs(001) and GaAs(111), are considered. The analytical results have shown that these two approaches generally result in considerable differences in the prediction of the QD-induced elastic field. Also, different crystallographic orientation of a spacer medium can cause a characteristic change in the QD-induced field. © 2002 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0021-8979</s0>
</fA01>
<fA02 i1="01">
<s0>JAPIAU</s0>
</fA02>
<fA03 i2="1">
<s0>J. appl. phys.</s0>
</fA03>
<fA05>
<s2>92</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Elastic analysis of an inhomogeneous quantum dot in multilayered semiconductors using a boundary element method</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>YANG (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>PAN (E.)</s1>
</fA11>
<fA14 i1="01">
<s1>Structures Technology Incorporated, 543 Keisler Drive, Suite 204, Cary, North Carolina 27511</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>3084-3088</s1>
</fA20>
<fA21>
<s1>2002-09-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>126</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0430103</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of applied physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this work, we examine the elastostatic field due to a buried quantum dot (QD) in multilayered semiconductors using a boundary element method. Since the integral kernels employ a special Greens function that satisfies the interfacial continuity and boundary conditions for a multilayered matrix, coupled with the conventional Kelvin-type Greens function for the QD, the present method only requires discretization along the interface between the matrix and QD to solve the problem. With this method, the QD can be modeled in general as an inhomogeneity relative to the matrix. We have examined a practical semiconductor multilayer system of an InAs wetting/GaAs spacer with a buried cuboidal QD of either wetting or a spacer medium. The QD is correspondingly modeled by either the inhomogeneity or inclusion approach. Two crystallographic orientations of the spacer medium, GaAs(001) and GaAs(111), are considered. The analytical results have shown that these two approaches generally result in considerable differences in the prediction of the QD-induced elastic field. Also, different crystallographic orientation of a spacer medium can cause a characteristic change in the QD-induced field. © 2002 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60H65</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B60H60B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B60B20D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A40J</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>6865H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>6860B</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>6220D</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8140J</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etude théorique</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Theoretical study</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Elasticité</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Elasticity</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Méthode fonction Green</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Green's function methods</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Méthode élément frontière</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Boundary element method</s0>
</fC03>
<fN21>
<s1>245</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0235M000141</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00DE53 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00DE53 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0430103
   |texte=   Elastic analysis of an inhomogeneous quantum dot in multilayered semiconductors using a boundary element method
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024